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Abstract
Purpose  To create a new artificial intelligence approach based on deep learning (DL) from multiparametric MRI in the 
differential diagnosis of common parotid tumors.
Methods  Parotid tumors were classified using the InceptionResNetV2 DL model and majority voting approach with MRI 
images of 123 patients. The study was conducted in three stages. At stage I, the classification of the control, pleomorphic 
adenoma, Warthin tumor and malignant tumor (MT) groups was examined, and two approaches in which MRI sequences 
were given in combined and non-combined forms were established. At stage II, the classification of the benign tumor, MT 
and control groups was made. At stage III, patients with a tumor in the parotid gland and those with a healthy parotid gland 
were classified.
Results  A stage I, the accuracy value for classification in the non-combined and combined approaches was 86.43% and 
92.86%, respectively. This value at stage II and stage III was found respectively as 92.14% and 99.29%.
Conclusions  The approach presented in this study classifies parotid tumors automatically and with high accuracy using DL 
models.

Keywords  Artificial ıntelligence · Deep learning · Parotid tumors · Computer aided diagnosis · Head and neck cancer

Introduction

Salivary gland tumors constitute 3–12% of head and neck 
tumors, and 80% of salivary gland tumors originate from 
the parotid gland. 80% of parotid gland tumors (PGT) are 
benign tumors (BT), 20% are malignant tumors (MT), and 
the most common benign tumors are pleomorphic adenomas 

(PMA) and Whartin tumors (WT) [1]. The preoperative 
prediction of the differential diagnosis of parotid tumors 
strongly affects the surgical plan. Although the diagnostic 
strategy varies in PGT, Magnetic Resonance Imaging (MRI) 
and fine-needle aspiration cytology (FNAC) are frequently 
used [2, 3]

Multiparametric MRI is crucial for the differential diag-
nosis of PGT. T1-weighted contrast-enhanced (T1Wce) and 
T2-weighted (T2W) images present the properties of the 
textures of tumors, and diffusion-weighted imaging (DWI) 
shows tumor cellularity. Evaluating these MRI sequences 
together improves diagnostic accuracy [4]. It becomes more 
critical for the otolaryngologist to work with a radiologist 
experienced in the field of head and neck radiology to reach 
a diagnosis by evaluating the outputs of these imaging tech-
niques correctly. Recently, many studies aiming to make 
computers behave like an experienced radiologist have been 
carried out by using artificial intelligence (AI) algorithms 
in medical image analysis [5]. Deep learning (DL), a subset 
of AI, has been widely used in recent years to create medi-
cal decision support systems [6]. These DL-based systems 
provide high-accuracy results and open-access diagnosis 
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support tools for physicians [7–9]. There has been a dras-
tic increase in the volume of the otolaryngology literature 
describing novel applications of DL, while there are still 
exciting studies waiting to be developed in this area [10].

This study aimed to create a new non-invasive differential 
diagnosis method for PGT with a DL model using multipara-
metric MRI. The InceptionResNetv2 model was employed 
as a DL model. In this study, healthy parotid tissue called the 
control group (CG), and PMA, WT and MT, are considered 
in the differential diagnosis of PTG.

Materials and methods

This retrospective study was carried out at the Department 
of Otorhinolaryngology at the Faculty of Medicine at Inonu 
University with the approval of the Health Sciences Non-
Interventional Clinical Studies Ethics Committee, with the 
decision numbered 2020/1038. The key objective of this 
study is to create a new AI approach based on deep learning 
from multiparametric MRI in the differential diagnosis of 
common parotid tumors.

Patient group and MRI protocol

One hundred and twenty-three patients with a PGT who 
underwent parotidectomy in our clinic between 2010 and 
2020 were included the study. Patients who were operated 
for PGT and had the five aforementioned MRI sequences 
(T1Wce, T2W, b0, b1000, ADC) pre-operatively and a con-
trol group without any disease in the parotid gland were 
included. Patients whose pre-operative MR images had a 
quality level that was not standardized for radiological evalu-
ation and did not contain these five sequences were excluded. 
Tumor subtypes that were rare and did not constitute a suffi-
cient sample size were also excluded. Pleomorphic adenoma 
(PMA) and Whartin tumor (WT) cases were included in the 
study as benign tumors (BT). These were also the most fre-
quently operated BT in our clinic. Since malignant tumors 
(MT) of the parotid gland are very rare, the MT were exam-
ined in a single group without dividing them into histopatho-
logical subtypes. However, these MT had malignancy find-
ings, such as ill-defined borders, cystic components, necrosis, 
and invasion of surrounding tissues on MRI.

All MRI examinations were performed at 1.5 Tesla 
(T) (Magnetom AERA, Siemens Healthcare, Erlan-
gen, Germany) including diffusion weighted sequences. 
The scan volumes varied according to the tumor loca-
tion and included the following sequences: A coronal 
turbo inversion recovery sequence, an axial T1-weighted 
(T1W) sequence (voxel size: 0.3 × 0.3 × 3.0  mm, FoV 
read: 220 mm, slice thickness: 3.0 mm, repetition time 
/ echo time: 580  ms/12  ms), an axial T2W sequence 

(0.6 × 0.6 × 3.0 mm, 220 mm, 3.0 mm, 4000 ms/84 ms) 
and DW-images in the axial plane (1.3 × 1.3 × 4.0 mm, 
250  mm, 4.0  mm, 3000  ms/111  ms). After contrast 
administration (gadolinium–DTPA, 0.1 mmol/kg), T1W 
contrast-enhanced fat-saturated sequences were per-
formed in the axial plane (0.4 × 0.4 × 3.0 mm, 220 mm, 
3.0  mm, 533  ms/12  ms) and in the coronal plane 
(0.5 × 0.5 × 3.0 mm, 300 mm, 3.0 mm, 509 ms/9.6 ms). 
Between three and six different of the following b val-
ues (0, 50, 100, 150, 300, 500, 800, 900 and 1000 mm2/
sec) were applied in three different orthogonal directions, 
thus minimizing the effects of diffusion anisotropy. ADC 
maps were reconstructed by DWI of the different b factor, 
b = 0 and 1000 s/mm2 on workstation. Thus, we collected 
data sets containing five multiparametric MRI sequences 
for each patient, namely, T1Wce, T2W, b0 (DWI, b = 0 s/
mm2), b1000 (DWI, b = 1000 s/mm2), and apparent diffu-
sion coefficient (ADC) maps [11].

Multiparametric MR images in five different sequences 
were used as input to the DL model. In the PGT group, the 
cross sections of all MR images which contained the tumor 
were included in the data set to increase the number of 
images. In the control group, healthy parotid tissue images 
were obtained from two cross sections of each patient's right 
and left parotid glands. Standardization was achieved by 
selecting identical cross sections in each sequence. The MR 
images were converted from the DICOM format to the JPEG 
format to use a universal image format. Both in CG and the 
PGT group, the region containing the parotid gland and its 
surroundings were cropped from these images as multiple 
single slices. In this rectangular manual cropping process, 
the borders of the rectangle were the masseter muscle in the 
anterior direction, the posterior belly of the digastric muscle 
in the posterior direction, and the medial pterygoid muscle 
in the medial direction. On the lateral border, the borders 
slightly exceeding the skin were clipped. The images were 
cropped by an otolaryngology consultant (first author) and a 
senior head and neck surgeon (third author) under the supervi-
sion of a radiologist. This way, 3495 (699 cross sections × 5 
sequences) parotid gland region images were cropped from 
the MR images when including all patients and controls (total, 
n = 173). An example of input data for each group is shown in 
Fig. 1. The cropped radiological images were applied to the 
deep learning model without any preprocessing.

The data sets were analyzed using the SPSS 22 (Statisti-
cal Package for the Social Sciences; SPSS Inc., Chicago, 
IL) package program. As descriptive statistics, the qualita-
tive variables are expressed as frequencies and percentages 
(n and %), while the quantitative variables Are expressed 
as mean ± standard deviation values. Analysis of variance 
(ANOVA) was used to compare the variables between 
groups. p < 0.05 was used as the statistical significance level 
in the analyses.
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Deep learning, InceptionResNetv2 and conventional 
classifiers

Deep learning (DL) is a complicated version of machine 
learning. DL contains various multiple processing lay-
ers with large depths. DL can automatically learn the 

representations of input data thanks to multiple convolu-
tional abstractions [12–15]. A common form of usage of 
DL is transfer learning. Transfer learning provides the 
image classification process with limited input images. 
In this study, the InceptionResNetv2 model was used to 
perform transfer learning for the PGT classification. The 

Fig. 1   Example input data set for each group. CG control group, PMA pleomorphic Adenoma, WT warthin tumor, MT malignant tumors
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InceptionResNetv2 model was trained with the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) data 
set. InceptionResNetv2 contains inception modules and 
residual connections [14, 16, 17]. The inception modules 
and the residual connections provide the opportunity to 
avoid a degradation problem of the deep structure and less 
training time [17, 18]. In this study, the conventional clas-
sifiers that were used included the support vector machine 
(SVM), k-nearest neighbor (KNN) and linear discriminant 
classifier (LD) approaches [18–21].

Proposed methodology

This study aimed to detect and classify PGT by using DL 
approaches. The InceptionResNetv2 model was used to 
perform transfer learning. The experimental procedures 
were designed in three stages: Stage I: the differential diag-
nosis of CG, PMA, WT and MT. Stage II: the differential 
diagnosis of benign tumors (PMA + WT) and malignant 
tumors, stage III: the differential diagnosis of CG and PGT 
(PMA + WT + MT).

We considered two approaches in the experiment design, 
the combined and non-combined approaches, in stage I. In 
the combined approach, we applied the five MRI sequence 
images together in the training and validation of the Incep-
tionResNetv2 model. Thus, it was aimed to train the network 
with more input images. In the non-combined approach, 
each MRI sequence was considered a data set. Then, a DL 
model was trained for each MRI sequence, so we obtained 
five InceptionResNetv2 models. The input data set consisted 
of conventional T1Wce, T2W, diffusion-weighted b0, b1000 
and ADC sequence images. The test images were evaluated 
for each MRI sequence and with the majority voting (MV) 
approach in the testing phase. MV was applied to boost the 
test performance of the proposed method. In this study, the 
MV approach was applied to the MRI sequences instead of 
competitive classifiers as a similar approach to a radiologist 
examination. MV was intended to assign a class label's high-
est probability in five sequence images to new test MRI data. 
The proposed framework and the MV process are shown 
for stage I with the combined approach in Fig. 2a and b 
respectively.

As seen in Fig. 2a that depicts stage I with the combined 
approach, class numbers and names should be adopted for 
other stages. An example can be seen in Fig. 2b, where 
the trained model produced three PMA results, one WT 
result and one MT result for the five sequences. Finally, 
MV assigned a PMA class to the new test data belonging a 
patient because of the high probability class.

The data set was randomly divided into three parts, train-
ing, validation and testing, and it was kept constant in all 
experimental procedures, with ratios of 70%, 10% and 20%, 
respectively. The InceptionResNet2 model was trained using 

the stochastic gradient descent optimizer method, 32 input 
batch size, 30 epochs, and a learning rate of 0.05 for all 
approaches. The deep features of InceptionResNetv2 were 
classified with three conventional machine learning methods 
as SVM, KNN and LD. The deep features were obtained 
from the fully connected layer of InceptionResNetv2. For 
comparison, the same training and testing data set was uti-
lized in the extraction of the deep features. SVM, KNN and 
LD were trained with the deep features of the training data 
set. This procedure was applied to all stages.

Results

The proposed model was evaluated with the data set which 
was created with parotidectomy patients in our clinic. 
According to postoperative histopathological results, 46 
patients had PMA, 53 patients had WT, and 24 patients had 
MT (PGT, n = 123). The subtypes of MT were high-grade 
mucoepidermoid carcinoma in 11 cases, acinic cell carci-
noma in 5 cases, adenoid cystic carcinoma in 4 cases, squa-
mous cell carcinoma in 2 cases and malignant lymphoma in 
2 other cases. Parotid tumor subtypes and numbers accord-
ing to histopathological results are shown in Table 1. Addi-
tionally, 50 patients who had a head neck MRI for other 
reasons and no disease in the parotid gland were included 
in the study as the control group (CG, n = 50). The PGT 
patients consisted of 73 men and 50 women, and their mean 
age was 53.9 ± 14.8 years, while the individuals in CG con-
sisted of 31 men and 19 women, and their mean age was 
56.9 ± 16.6 years.

For all stages, the numbers of images and class distribu-
tions of the training, validation and testing data are given in 
Table 2 according to the ratios mentioned above.

The experiments started with stage I using the combined 
and non-combined approaches. The test results of all clas-
sifiers for stage I with the combined and non-combined 
approaches are given in Table 3.

Considering the overall performance results presented in 
Table 3, the combined approach had the best performance 
metrics compared to the non-combined approach. This situ-
ation was observed during all experiments, and for sim-
plicity, only the results of the combined experiments are 
included. The conventional classifiers were used only with 
the combined approach. The MV method increased accuracy 
by about 10% and 6% in the non-combined and combined 
approaches, respectively. The other metrics also supported 
the performance of the MV method. Experiments were con-
ducted to classify the deep features with SVM, KNN and LD 
to show the convenience of InceptionResnetv2.

The experiments conducted in stage II included the con-
trol group (CG), benign tumor (BT) (PMA + WT) group and 
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Fig. 2   Proposed methods. a The combined approach for stage I, b the majority voting process. CG control group, PMA pleomorphic adenoma, 
WT warthin tumor, MT malignant tumors
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malignant tumor (MT) group. The results of all classifiers 
are given in Table 4 for each sequence and MV.

As shown in Table 4, the diffusion b0 sequence pro-
duced the best results among the sequences. It was followed 
by the ADC sequence which had the second-best perfor-
mance. MV achieved an accuracy improvement of about 3%. 
This improvement was also seen in the other metrics. The 
SVM method provided the best performance in the other 
classifiers.

Experiments were conducted to determine whether a 
parotid tissue was healthy or had a tumor (PGT). Table 5 
presents the results of stage III for each sequence and MV.

One can see in Table 5 that the diffusion b0 sequence 
achieved the best performance, with metrics found as 97.86% 
accuracy, 100% sensitivity, and 97.06% specificity. The 

proposed MV approach provided a performance increase 
in this stage. The SVM, KNN and LD methods achieved 
excellent discrimination for stage III. Although Inception-
Resnetv2 with MV had acceptable success levels, it lagged 
behind the SVM, KNN and LD models.

ROC curves were plotted to show the performance of 
the InceptionResnetv2 and SVM models with MV in each 
class for stage I, stage II and stage III. These ROC curves 
are given in Fig. 3.

In Fig. 3, it can be seen that the models achieved excel-
lent CG discrimination in all stages. In stage I, the PMA and 
WT discrimination rates were good. The performance of the 
MT class lagged behind the other classes. In stage II, the 
SVM model provided a good discrimination performance in 
three classes compared to InceptionResNetv2. In stage III, 
SVM had excellent classification performance. Moreover, 
the InceptionResNetv2 classifier offered exemplary perfor-
mance in diagnosing PGT.

Discussion

The development of AI models has opened new scenarios 
owing to the possibility of non-invasively assessing features 
of medical images that are not evaluated by physicians [5]. 
In our approaches, using a combination of conventional and 
diffusion-weighted MRI as input data and the majority vot-
ing (MV) approach in test data was similar to the evalua-
tion of an MR image in clinical practice. We designed three 

Table 1   Subtypes of parotid tumors

Distribution of cases according to tumor histopathology Number of 
cases (n)

Pleomorphic adenoma 46
Warthin tumor 53
High-grade mucoepidermoid carcinoma 11
Acinic cell carcinoma 5
Adenoid cystic carcinoma 4
Squamous cell carcinoma 2
Malignant lymphoma 2
Total cases 123

Table 2   Information about data 
set

X represent size and number of images (height × weight × 3 symbolize color layer  ×  image numbers), Y 
symbolize class names and its distributions
CG control group, PMA pleomorphic adenoma, WT warthin tumor, MT malignant tumors, BT benign 
tumors, PGT parotid gland tumor

Stages Training data Validation data Test data each sequence

Stage I (combined)
 X 299 × 299 × 3 × 2445 299 × 299 × 3 × 350 299 × 299 × 3 × 140
 Y CG MT PMA WT CG MT PMA WT CG MT PMA WT

720 380 595 750 90 60 105 95 38 21 42 39
Stage I (each sequence)
 X 299 × 299 × 3 × 489 299 × 299 × 3 × 70 299 × 299 × 3 × 140
 Y CG MT PMA WT CG MT PMA WT CG MT PMA WT

144 76 119 150 18 12 21 19 38 21 42 39
Stage II
 X 299 × 299 × 3 × 2445 299 × 299 × 3 × 350 299 × 299 × 3 × 140
 Y BT CG MT BT CG MT BT CG MT

1355 710 380 200 95 55 79 39 22
Stage III
 X 299 × 299 × 3 × 2445 299 × 299 × 3 × 350 299 × 299 × 3 × 140
 Y CG PGT CG PGT CG PGT

720 1725 90 260 38 102
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stages to perform comprehensive parotid gland tumor (PGT) 
classification. Conventional and DWI sequence images were 
used to construct the data set. We proposed the application 
of the five MRI sequences together and named this method 
the combined approach. The aim of the combined approach 

was to expand our data set and increase PGT discrimina-
tion performance. The combined method's performance was 
compared to those of the five InceptionResNetv2 models 
trained for each MRI sequence, called the non-combined 
approach. In testing, the five MRI sequences were evaluated 

Table 3   Test results of all classifiers with combined and non-combined for stage I (CG, PMA, WT and MT classification)

Bold denotes that the DL model created by the combined approach provides improvement in all statistical performance measures compared to 
the non-combined approach
T1Wce T1-weighted contrast enhanced, T2W T2-weighted, b0, b1000, ADC diffusion weighted images, ADC apparent diffusion coefficient, DL 
deep learning MV majority voting approach, SVM support vector machine, KNN k-nearest neighbor, LD linear discriminant, Acc accuracy, Sens 
sensitivity, Spec specificity, PPV positive predictive value, NPV negative predictive value, CG control group, PMA pleomorphic adenoma, WT 
warthin tumor, MT malignant tumors

Non-combined Combined

Acc (%) Sens (%) Spec (%) PPV (%) NPV (%) Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

Each sequence DL (InceptionResNetv2)
 T1Wce 81.43 78.90 93.77 79.72 92.49 83.57 79.92 94.30 84.38 94.68
 T2W 87.86 86.60 95.95 86.57 95.95 90.71 90.18 96.77 91.51 96.85
 b0 78.57 76.49 92.75 77.58 92.49 84.29 82.35 94.74 82.52 94.80
 b1000 72.14 70.36 90.58 72.53 91.27 85.00 84.83 95.00 83.82 94.99
 ADC 76.43 72.88 91.92 76.73 92.16 86.43 82.55 95.41 84.80 95.67

MV
 DL (Inception-

ResNetv2)
86.43 83.24 95.35 86.52 95.00 92.86 90.34 97.51 93.48 97.78

 SVM The matrics just calculated for DL (InceptionResNetv2) model 
for non-combined approach

93.57 90.98 97.73 94.93 98.03
 KNN 92.14 89.74 97.26 92.79 97.51
 LD 91.43 89.65 97.16 90.32 97.23

Table 4   Test results of all classifiers for stage II (CG, BT and MT 
classification)

T1Wce T1-weighted contrast enhanced, T2W T2-weighted, b0, b1000, 
ADC diffusion weighted images, ADC apparent diffusion coefficient, 
DL deep learning, MV majority voting approach, SVM support vector 
machine, KNN k-nearest neighbor, LD linear discriminant, Acc accu-
racy, Sens sensitivity, Spec specificity, PPV positive predictive value, 
NPV negative predictive value, CG control group, BT benign tumors, 
MT malignant tumors

Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

Each sequence DL (InceptionResNetv2)
 T1Wce 85.00 76.72 89.97 84.06 92.01
 T2W 85.71 79.10 91.11 85.22 92.16
 b0 89.29 81.87 92.72 90.72 94.82
 b1000 83.57 77.18 91.08 79.52 91.18
 ADC 88.57 80.79 92.27 87.40 94.24

MV
 DL 

(Inception-
ResNetv2)

92.14 83.33 93.99 95.93 97.15

 SVM 93.57 87.46 95.35 94.68 97.24
 KNN 92.14 85.52 94.73 91.58 96.38
 LD 92.86 85.94 94.97 95.27 97.02

Table 5   Test results of all classifiers for stage III (CG and PGT clas-
sification)

T1Wce T1-weighted contrast enhanced, T2W T2-weighted, b0, b1000, 
ADC diffusion weighted images, ADC apparent diffusion coefficient, 
DL Deep Learning, MV majority voting approach, SVM support vec-
tor machine, KNN k-nearest neighbor, LD Linear discriminant, Acc 
Accuracy, Sens sensitivity, Spec specificity, PPV positive predictive 
value, NPV negative predictive value, CG control group, PGT parotid 
gland tumors

Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

Each sequence DL (InceptionResNetv2)
 T1Wce 85.00 100.00 79.41 64.41 100.00
 T2W 95.71 100.00 94.12 86.36 100.00
 b0 97.86 100.00 97.06 92.68 100.00
 b1000 92.86 100.00 90.20 79.17 100.00
 ADC 94.29 100.00 92.16 82.61 100.00

MV
 DL 

(Inception-
ResNetv2)

99.29 100.00 99.02 97.44 100.00

 SVM 100.00 100.00 100.00 100.00 100.00
 KNN 100.00 100.00 100.00 100.00 100.00
 LD 100.00 100.00 100.00 100.00 100.00
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Fig. 3   ROC curves for all stages. CG control group, PMA pleomorphic adenoma, WT warthin tumor, MT malignant tumors. SVM support vector 
machine. ROC receiver operating characteristic
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together to increase the classification performance. This 
new approach, inspired by radiologists, is named the MV 
approach. The proposed approaches were tested with a data 
set collected from parotidectomy patients operated in our 
clinic. In this study, while creating the deep learning model 
and completing the training, the histopathological diagnosis, 
which is the gold standard, was taken as the final result. The 
InceptionResNetv2 model performance of the hidden deep 
features about PGT was tested with conventional classifiers. 
The results of the deep features with the conventional clas-
sifiers showed that InceptionResNetv2 is capable of PGT 
detection.

The differential diagnosis of parotid tumors is a broad 
and systematic approach that includes imaging, laboratory 
studies and pathological analysis. MRI and FNAC are the 
first methods in differential diagnosis [2, 3]. The ability of 
FNAC to determine parotid tumors is well-established, and 
its accuracy, sensitivity and specificity values have been 
reported in the ranges of 85–97%, 64–90% and 86–100%, 
respectively [3, 22]

Conventional and advanced MR imaging techniques 
come to the fore in imaging methods used to diagnose 
parotid tumors. Some studies have shown that a combination 
of conventional MRI and DWI showed higher diagnostic 
accuracy than conventional MRI or DWI alone [2, 4, 23]. 
A meta-analysis demonstrated that sensitivity and specific-
ity values were 76% and 83% for conventional MRI, 91% 
and 56% for DWI and 86% and 90% for the combination of 
conventional MRI with DWI [2]. In our study, first, we com-
bined all conventional MRI and DWI images in the train-
ing and validation process. In the non-combined approach, 
we trained models for each MRI sequence separately. We 
achieved better results for all statistical performance metrics 
in the combined approach.

Chang et al., who developed a DL model for parotid 
tumor classification with multimodal MRI, combined con-
ventional and DWI MRI images as input data and reported 
the accuracy rates for WT, PMA and MT as 83%, 67% and 
68%, respectively [9]. The best accuracy rate was obtained in 
WT, while in our study, PMA provided the highest accuracy 
as 97.62%. The results for each tumor type of the Inception-
ResNetv2 and SVM classifiers with the MV approach in our 
study are given in Table 6. In the study by Chang, while the 
DWI MRI combination yielded the best results, the combi-
nation of conventional MRI and DWI did not improve the 
results. In our study, it was seen that the best classification 
was made in the T2W sequence in both the combined and 
the non-combined approaches. It was also observed that the 
combination of conventional MRI and DWI increased the 
accuracy rate in all sequences. The accuracy rate increased 
by about 6.4% in the combined approach with MV.

In the DL model developed by Feng for the classifica-
tion of PGT, parotid gland regions were cropped from MR 

images, similar to our study [24]. Only T1W and T2W 
images were included in their study. Patients were exam-
ined in 3 groups as benign tumors, malignant tumors and 
free of tumors, and a modified ResNet model was used for 
classification. Their model's accuracy rate was 89% for the 
training data set and 83% for the validation data set [24]. 
We had an accuracy rate of 92.14% in the classification 
of BT, MT and CG with the DL model and MV approach 
in stage II.

In another study, the authors stated that with their pro-
posed anomaly detection (AD) and VGG16-based DL 
model, the classification of benign and malignant parotid 
tumors could also be successful in a small quantity of imbal-
anced data. They used non-medical images obtained from 
the CUReT data set to reduce the overfitting caused by the 
small number of images [25]. We used medical images of 
tumor-free parotid gland tissues to facilitate the removal of 
the general visual models of the PGT group and reduce over-
fitting. Indeed, in stage III, it was seen that the patients with 
PGT and CG could be distinguished with 100% accuracy 
with the proposed DL model. CG reduced the overfitting in 
stage II in which benign–malignant tumor classification was 
performed. While the aforementioned authors achieved 75% 
sensitivity and 82% specificity in the differential diagnosis 
of benign and malignant tumors with the VGG16-based DL 
model with AD, we obtained a better result with 83.33% 
sensitivity and 93.99% specificity in stage II with the MV 
approach.

Our study had several limitations. First, a limited data set 
was studied due to the rarity of PGT. There are many param-
eters to be trained in DL that require more input data than 
conventional methods demand. The limited input data may 
cause inconsistent changes, especially regarding the aspect 
of statistical performance criteria in evaluating test images. 

Table 6   Classification results of SVM and InceptionResNetv2 for SI 
with majority voting in the each parotid gland tumors

T1Wce T1-weighted contrast enhanced, T2W T2-weighted, b0, b1000, 
ADC diffusion weighted images, ADC apparent diffusion coefficient, 
DL deep learning, MV majority voting approach, SVM support vector 
machine, Acc accuracy, Sens sensitivity, Spec specificity, PPV posi-
tive predictive value, NPV negative predictive value, PMA pleomor-
phic Adenoma, WT warthin tumor, MT malignant tumors

Tumor type Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

DL (InceptionResNetv2)
 PMA 97.62 97.62 92.86 85.42 98.91
 WT 92.31 92.31 98.02 94.74 97.06
 MT 71.43 71.43 99.16 93.75 95.16

SVM
 PMA 97.62 97.62 93.88 87.23 98.92
 WT 94.87 94.87 97.03 92.50 98.00
 MT 71.43 71.43 100.00 100.00 95.20
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Moreover, the cropping procedure was performed manually. 
The process of manual cropping takes approximately one 
minute. In the future, a fully automated pipeline could be 
built with a deep learning segmentation approach instead of 
a manual cropping process to provide standardization and 
time efficiency.

A point that should be kept in mind for AI studies in 
medicine is that DL models are supportive of clinical 
diagnostic methods and examination findings, and they 
should not be evaluated alone. Inflammatory conditions of 
the parotid gland or involvement with non-tumor diseases 
may also be included in the differential diagnosis with 
tumors in MRI. Therefore, the patient's symptoms and 
examination findings are important in clinical diagnosis. 
Additionally, these studies are preliminary studies of AI-
based diagnosis which are currently being carried out in 
selected and characteristic diseases.

Conclusions

In this paper, an AI-based new approach that classifies 
common parotid tumors automatically and with high accu-
racy is presented. It was observed that the proposed DL 
method (Combined approach with Majority Voting) differ-
entiated the tumor-containing parotid gland from the nor-
mal parotid gland excellently, and it made the differential 
diagnosis of benign parotid tumors and malignant parotid 
tumors very well. In the subtypes of parotid tumors, the 
DL model detected PMA and WT very well, but it lagged 
behind other methods in detecting MT. This study will 
provide convenience for physicians in the evaluation of 
MRI images of parotid masses.
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