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A B S T R A C T   

In this paper, a deep-rhythm-based approach is proposed for the efficient detection of drowsiness based on EEG 
recordings. In the proposed approach, EEG images are used instead of signals where the time and frequency 
information of the EEG signals are incorporated. The EEG signals are converted to EEG images using the time- 
frequency transformation method. The Short-Time-Fourier-Transform (STFT) is used for this transformation 
due to its simplicity. The rhythm images are then extracted by dividing the EEG images based on frequency 
intervals. EEG signals contain five rhythms, namely Delta rhythm (0–4 Hz), Theta rhythm (4–8 Hz), Alpha 
rhythm (8–12 Hz), Beta rhythm (12–30 Hz), and Gamma rhythm (30–50 Hz). From each rhythm image, deep 
features are extracted based on a pre-trained convolutional neural network (CNN) model, with pre-trained re
sidual network (ResNet) models such as ResNet18, ResNet50, and ResNet101. The obtained deep features from 
each rhythm image are fed into the Long-Short-Term-Memory (LSTM) layer, and the LSTM layers are then 
sequentially connected to each other. After the last LSTM layer, a fully-connected layer, a softmax layer, and a 
classification layer are employed in order to detect the class labels of the input EEG signals. Various experiments 
were conducted with the MIT/BIH Polysomnographic Dataset. The experiments showed that the concatenated 
ResNet features achieved an accuracy score of 97.92%. The obtained accuracy score was also compared with the 
state-of-the-art scores and, to the best of our knowledge, the proposed method achieved the best accuracy score 
among the methods compared.   

1. Introduction 

Drowsiness, which is indicated as low-level loss of consciousness, is 
one of the known causes of vehicular accidents worldwide [1]. The 
instantaneous reflex of the human mind, which is important in terms of 
its ability to make quick decisions, is weakened during the drowsiness 
state. Statistics have shown that most vehicular accidents occur due to 
driver drowsiness [2]. Thus, developing early warning systems against 
driver drowsiness are within the scope of car companies’ development 
activities [1]. 

Driver drowsiness detection is generally accomplished through the 
use of cameras, wearable sensors, and with EEG signals. Wearable 
sensor-based methods use signal processing and learning approaches to 
recognize driver drowsiness. Camera-based approaches use numerous 
image processing techniques in order to recognize and analyze various 
driver behaviors. Recently, EEG-based methods have attracted 

considerable attention in the detection of driver drowsiness [3,4]. 
Budak et al. [1] proposed a hybrid approach for driver drowsiness 

detection using EEG signals. The authors used a series of feature 
extraction mechanisms based on zero-crossing rate distributions, en
ergy, spectral entropy, and instantaneous-frequency. They also used 
mean values and standard deviation calculated from the instantaneous 
frequencies of Tunable Q-Factor Wavelet Transforms (TQWT). These 
deep features were also considered in their proposed method. The EEG 
signals were transformed into spectrogram images for deep feature 
extraction. Three different Long-Short-Term-Memory (LSTM) network 
classifiers were used. The outputs of the LSTM classifiers were then fused 
with a majority voting layer. The authors then tested their method using 
the MIT/BIH Polysomnographic Dataset (MIT/BIH-PD), and a 94.31% 
accuracy score was recorded. 

Correa et al. [2] used Power Spectral Density (PSD) and Wavelet 
Transform (WT) in the detection of driver drowsiness. Frequency-based 
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features were extracted from a total of 18 EEG signals. The authors opted 
to use Neural Networks (NN) classifier, recording an accuracy score of 
84.1%. Later, Correa et al. [3] proposed another approach to driver 
drowsiness detection that employed spectral analysis and WT for feature 
extraction. In using the NN classifier, an 85.66% accuracy score was 
obtained in their study. 

Belakhdar et al. [4] used windowed Fast Fourier Transform (FFT) for 
frequency-based feature extraction. The authors considered Support 
Vector Machines (SVM) and NN classifier methods for recognition pur
poses. The polysomnography database was used for performance eval
uation of their proposed method, and an 84.75% accuracy score was 
obtained. 

Silveira et al. [5] proposed an efficient WT-based approach for 
drowsiness detection. Specifically, the m-terms wavelet decomposition 
of EEG signals was used for feature extraction. The alpha and beta 
rhythms of the input EEG signals were used to discriminate between the 
subject’s awake and drowsy states. The authors used the PhysioNet 

Sleep EEG dataset, and achieved a 98.7% accuracy score in their tests. 
Chen et al. [6] used WT, FT and eyelid movements in their study on 

drowsiness detection. While the wavelet sub-bands were used for 
nonlinear feature extraction, FT was used for spectral feature extraction 
from the input EEG signals. For eyelid-movement-based feature extrac
tion, Electrooculography (EOG) was used. The extracted features were 
concatenated and Extreme Learning Machine (ELM) classifier was then 
used for drowsiness detection. The authors used night-channel EEG re
cordings, and a 95.6% accuracy score was recorded. 

Taran et al. [7] used the coefficients of the Adaptive Hermite 
Transform (AHT) as features and ELM classifier for drowsiness detec
tion. The basis function of the HT was selected by using an optimization 
algorithm. The obtained features were then classified by k-Nearest 
Neighbor (k-NN), ELM, SVM, and Bayesian-based classifiers. 
MIT/BIH-PD was used in their experiments, and a 92.5% accuracy score 
was yielded. 

Boonnak et al. [8] proposed an EEG-based drowsiness detection 

Fig. 1. Illustration of proposed method.  
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approach based on WT, and consisted of two stages. First, energy co
efficients were calculated from WT coefficients, and then NN was 
applied. The authors used the MIT/BIH-PD and a 90.27% accuracy score 
was recorded. A drowsiness detection system, where the alpha relative 
power of EEG signals was used, was proposed by Picot et al. [9], and a 
dataset containing 40 EEG recordings was used in their experiments, 
achieving an accuracy score in testing of 84.2%. 

Silveira et al. [10] developed a drowsiness detection system which 
was simple, portable and environment-free. Wavelet packet transform, 
spectral features and Wilcoxon signed rank measure were used in their 
developed detection system. The authors used a dataset with data 
collected from 20 subjects, and the experimental results evaluated ac
cording to their classification accuracy. 

Anitha et al. [11] developed a multi-modal drowsiness detection 
system based on recorded videos and bio signals. Various image and 
signal processing routines were employed in the analysis of the video 
and bio-signal. A visually-stimulated-potential-based drowsiness detec
tion system was proposed by Hashemi et al. [12], in which the 
steady-state visually stimulated potential was investigated in order to 
determine the eye state of the subject, i.e., closed or open. NN and fre
quency domain features were used for drowsiness detection, and a 
97.0% accuracy score was obtained. 

A perceptual function was designed by Chuang et al. [13] for 
drowsiness detection. Frequency domain features were extracted from 
the EEG recordings of 10 subjects. The experimental works showed that 
an 88.7% accuracy score was obtained. Rundo et al. [14] proposed a 
CNN-based drowsiness detection system. Their end-to-end CNN archi
tecture consisted of seven layers, and was trained on EEG spectrogram 
images. In their proposed CNN architecture, there were three convolu
tion layers, three max-pooling layers, and one fully-connected layer. 
Their experimental works reported an 86.0% accuracy score. 

An EEG rhythms-based drowsiness detection approach was proposed 
by Taran et al. [15]. The Hilbert-Huang transform was initially applied 
to the input EEG signals, with an instantaneous frequency calculated. 
For rhythm extraction, empirical mode decomposition was applied. In 
their experiments, MIT/BIH-PD was considered and a 90.6% accuracy 
score was reported. Tripathy et al. [16] used a filtering-based approach 
to extract the sub-bands of EEG signals. Variance and entropy-based 
features were extracted from the sub-bands of the EEG signals, and 
deep NN classifier was used for the detection of drowsiness. MIT/BIH-PD 
was used in their experiments, and an 85.51% accuracy score was re
ported by the authors. 

In the current study, a novel hybrid scheme is proposed for driver 
drowsiness detection by using EEG signals. The proposed method uses 
deep rhythm features and LSTM network for the efficient classification 
of drowsiness and awake states. Input EEG signals are initially converted 
into T-F EEG images by using the STFT method. Rhythm extraction is 
then carried out on the T-F image domain. Thus, five different rhythm 
images are produced from the input EEG T-F images. CNN-based deep 
feature extraction is applied on the rhythm images. To this end, a pre
trained CNN model was adopted. The ResNet architectures were 
considered due to their efficient structures, with ResNet18, ResNet50 
and ResNet101 models used in the experiments. The obtained deep 
features from each rhythm image were then fed into different LSTM 
layers, and the LSTM layers were then sequentially connected to each 
other. Following the final LSTM layer, a fully-connected layer, a softmax 
layer, and a classification layer were employed in order to detect the 
class labels. MIT/BIH-PD was used in the experiments, and the perfor
mance of the proposed hybrid scheme evaluated with 10-fold cross- 
validation testing. The calculated average accuracy score was 97.92%, 
which is superior when compared to the results from other methods 
published in the literature. 

The remainder of this paper is organized as follows. Section 2 in
troduces the proposed method and the related theories, whilst Section 3 
details the experimental works and the results, and the paper concludes 
with Section 4. 

2. Proposed method 

An illustration of the proposed method is presented in Fig. 1. The 
input EEG signals are initially converted into time-frequency (T-F) im
ages by using Short-Time-Fourier-Transform (STFT) [17]. The obtained 
T-F images are then divided into EEG rhythm images. As EEG signals 
contain five rhythms, Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), 
Beta (12–30 Hz), and Gamma (30–50 Hz), five different EEG rhythm 
images are obtained. Then, deep features are extracted for each rhythm 
image using the fully-connected layers of pre-trained CNN models 
(ResNet18, ResNet50, and ResNet101). The obtained deep features from 
each rhythm image are then fed into the LSTM layer, and the LSTM 
layers sequentially connected to each other. Following the final LSTM 
layer, a fully-connected layer, a softmax layer, and a classification layer 
are employed in order to detect the class labels of the input EEG signals. 

2.1. Convolutional neural networks 

Traditionally, neural networks are suited to simple classification 
problems having a low dimensional input size. However, image recog
nition problems with a very large input size, such as image recognition, 
leads to an impractical number of parameters in the learning process 
[18]. Convolutional Neural Networks (CNNs) can decrease the number 
of these parameters compared to fully-connected neural networks. CNNs 
generally consist of a convolution layer, pooling layer, and a 
fully-connected layer [18,19]. The convolution layer performs feature 
mappings from the input images. The feature mappings process can be 
expressed using the parameters shown in Eq. (1), 

Xl
j = f

(
∑

i∈Mj

Xl− 1
j ∗ kl

ij+bl
j

)

(1)  

where Xl
j and Xl− 1

j represent the current and previous convolution layer, 
respectively, kl

ij denotes the convolution learnable kernel filter, and bl
j is 

the bias vector used to prevent over-fitting of networks. In addition, f() 
denotes the activation function, which generally uses rectified linear 
(ReLU) functions owing to their performance, and Mj is the map selec
tion indices. Then, pool layers are used to downsize the feature map
pings [19]. The pooling process can be expressed as shown in Eq. 2: 

Xl
j = down

(
Xl− 1

j

)
(2)  

where down(.) denotes the downsizing function. Average or maximum 
pooling techniques are generally used in the pool layer. 

A fully-connected (FC) layer classifies the discriminative features 
obtained from the previous convolution and pooling layers. In the 
training phase, optimization algorithms [20,21] such as RMSprop, 
Adaptive Moment Estimation (ADAM), and Stochastic Gradient Descent 
with Momentum (SGDM) are used in order to achieve the best perfor
mance. The weights are then updated according to the SGDM optimizers 
with Eqs. (3,4) [19]. 

Vt = βVt− 1 + a∇wL(W,X, y) (3)  

W = W − aVt (4)  

where L denotes the loss function, a represents the learning rate, and W 
denotes the weights to be updated. 

2.2. LSTM 

The LSTM invented by Hochreiter and Schmidhuberm et al. is an 
improved version of the Recurrent Neural Network (RNN) [22–25]. In 
terms of structural aspects, LSTM’s are more complex than RNNs, with 
LSTMs containing a memory cell and gate mechanism to overcome 
gradient problems. The gate mechanism consists of a forget gate (ft), an 
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input gate (it), an update gate (gt), and an output gate (ot). A typical 
LSTM structure is illustrated in Fig. 2 [23]. 

The memory cell state executes add or remove for any information in 
the chain with the help of others. The process can be defined mathe
matically by the following six equations [24,25]. 

ft = σ
(
wf xt + wf ht− 1 + bf

)
(5)  

it = σ(wixt + wiht− 1 + bi) (6)  

gt = tanh
(
wgxt + wght− 1 + bg

)
(7)  

ct = ft∗ct− 1 + it∗gt (8)  

ot = σ(woxt + woht− 1 + bo) (9)  

ht = ot∗tanh(ct) (10)  

where ft, it, gt and ot symbolize the outputs of the respected gate, ct is the 
memory cell state, ht refers to the output of the LSTM, w is the weights 
matrix, b refers to the bias vector, σ(·) is the sigmoid function given in 
Eq. (6) and tanh(·) refers to the hyperbolic tangent function given in Eq. 
(7). 

σ(x) = 1
1 + e− x (11)  

tanh(x) =
ex − e− x

ex + e− x (12) 

Based on Eqs. (5) to (12), detailed adjustments can be made to the 
inputs and inner states, which affect the memory cell [25]. 

2.3. Transfer learning 

Transfer Learning is an approach used to solve different problems 
using pre-trained weights of a model developed as a solution to a certain 
problem. This approach applies fine-tuning to pre-trained deep archi
tectures. In the current study, fine-tuning was performed based on the 
transfer of new layers, instead of the last three layers, of pre-trained deep 
networks in order to adapt to the problem of driver drowsiness. 

Deep feature extraction is an approach based on extracting features 
learnt from layers of pre-trained CNN architectures. This approach was 
used to solve the driver drowsiness problem in the current study, with 
effective deep features obtained from the fully-connected layer (fc1000) 
of the ResNet18, ResNet50, and ResNet101 models. The extracted deep 
properties were then classified and tested using the traditional machine 
learning method. 

3. Experimental works & results 

MATLAB software was used in all experimental works in the current 
study. The computer used in the experiments has an Nvidia M4000 GPU 
with 8 GB of memory. Cross-validation and average accuracy score were 
considered as performance measures in evaluating the proposed 
method. During the EEG image construction, the parameters of the SFTF 
were set heuristically. The length and overlap parameters of the Han
ning window were set to 32 ms and 16 ms, respectively. In addition, the 
number of the FFT points was set to 512 points. The obtained EEG im
ages were represented by the dB power scale and were saved with jet 
color map. In the training phase of the proposed method, a LSTM model, 
which consisted of a bidirectional LSTM layer, softmax layer, a fully- 
connected layer, and a classification layer, was used. The number of 
hidden units in the bidirectional LSTM layer was set to 100. The output 
of the fully-connected layer was in two classes. The training parameters 
and values are presented in Table 1. 

Considering the parameters given in Table 1, the epoch number and 
batch size were tuned in the range of [10 80] with a step size of 5. Prior 
to applying the data to the LSTM network, the data was normalized 
using zero-center normalization. The “adam” solver was used in the 
training of the LSTM network. 

Various experiments were conducted using the drowsiness dataset. 
The initial experiment was conducted on whole EEG images. In other 
words, rhythm extraction was not conducted and whole EEG images 
were directly conveyed to the feature extraction phase. The results ob
tained from this initial experiment are shown in Table 2. The cubic 
kernel function and one-vs-all approach in these experiments for SVM 
classifier parameters. As can be seen in Table 2, deep features from the 
ResNet18, ResNet50, and ResNet101 models were classified using the 
SVM. Moreover, the fine-tuning results for the ResNet18, ResNet50, and 
ResNet101 models were also tabulated in Table 2. While the first three 
rows of Table 2 indicate the deep features results, the other three rows 
show the fine-tuning results. The classification accuracy results obtained 
with deep features and SVM classifier were 85.47%, 84.08%, and 
83.74%, respectively. The ResNet18 model produced the highest accu
racy score with an accuracy score of 85.47%, whereas the second highest 
accuracy score of 84.08% was produced by the ResNet50 model, and the 
lowest accuracy score of 83.74% was produced by the ResNet101 model. 
From these results, it can be seen that the shallow ResNet models 
(ResNet18 and ResNet 50) produced better results than the ResNet101 
model using the drowsiness dataset. 

From Table 2, it can also be seen that the fine tuning of the ResNet 
models did not produce better results than the deep features and SVM 
methods. Fine tuning of the ResNet18 model produced an 84.78% 

Fig. 2. Architecture of LSTM model.  

Table 1 
Training parameters and values.  

Parameter Value 

Initial learning rate 0.0001 
Learn rate schedule Piecewise 
Learn drop period 100 
Learn drop factor 0.001 
Gradient threshold 1  

Table 2 
Performance of transfer learning methods (Deep fea
tures + SVM and Fine tuning of CNN) on whole EEG images.  

Model Accuracy (%) 

ResNet18 + SVM 85.47 
ResNet50 + SVM 84.08 
ResNet101 + SVM 83.74 
ResNet18 + CNN 84.78 
ResNet50 + CNN 83.04 
ResNet101 + CNN 82.01  
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accuracy score, whilst fine tuning of the ResNet50 and ResNet101 
models produced 83.04% and 82.01% accuracy scores, respectively. 
From these scores, it can be seen that fine tuning of the ResNet18 model 
produced the highest accuracy score for the drowsiness detection 
dataset. 

In our next experiment, we evaluated the proposed rhythm-based 
deep features and LSTM networks. To this end, various experiments 
were conducted with the ResNet18, ResNet50, and ResNet101 models. 
The results of these experiments are presented in Table 3. 

The first three rows of Table 3 present the results for the ResNet18, 
ResNet50, and ResNet101 models, respectively. When the results from 
Tables 2 and 3 are compared, it can be seen that dividing the input EEG 
images into rhythm images improved the classification accuracy level. 

Table 3 
Performance of proposed deep rhythm-based approach.  

Model Accuracy (%) 

Rhythm-based approach (ResNet18) 95.50 
Rhythm-based approach (ResNet50) 96.54 
Rhythm-based approach (ResNet101) 95.50 
Rhythm-based approach (ResNet18 + ResNet50) 96.19 
Rhythm-based approach (ResNet18 + ResNet101) 96.19 
Rhythm-based approach (ResNet50 + ResNet101) 96.89 
Rhythm-based approach (ResNet18 + ResNet50 + ResNet101) 97.92  

Fig. 3. ROC curves for single ResNet Models and concatenated ResNet models.  

M. Turkoglu et al.                                                                                                                                                                                                                              



Biomedical Signal Processing and Control 65 (2021) 102364

6

While the ResNet50 model produced a 96.54% accuracy score, the 
ResNet18 and ResNet101 models both produced accuracy scores of 
95.50%. Concatenation of CNN models was also investigated, with two- 
way concatenation of the ResNet18 and ResNet50, ResNet18 and 
ResNet101, ResNet50 and ResNet101 models, plus a three-way concat
enation of the ResNet18, ResNet50, and ResNet101 models. From these 
concatenation arrangements, the highest accuracy score was 97.92% 
from the three-way concatenation of the ResNet18, ResNet50, and 
ResNet101 models. The two-way concatenation of the ResNet50 and 
ResNet101 models produced the second best accuracy score of 96.89%, 
whilst concatenations of the ResNet18 and ResNet50 models, and also 
the ResNet18 and ResNet101 models each produced an identical 96.19% 
accuracy score. 

Fig. 3 tabulates the ROC curves for the ResNet18, ResNet50, and 
ResNet101 models, as well as concatenations of these same models. 
From Fig. 3, it can be seen that the singular (nonconcatenated) ResNet 
models produced almost identical ROC curves, whilst the concatenated 
ResNet18/50/101 model produced the better ROC curve. In addition, 
Area Under Curve (AUC) values were calculated for the ResNet18, 
ResNet50, and ResNet101 models and the three-way concatenated 
ResNet18/50/101 model as 95.67, 96.41, 95.40, and 98.12, respec
tively. From these AUC scores, it can be seen that the highest result was 
for the three-way concatenated ResNet18/50/101 model. 

We further investigated the effect of each rhythm image on the 
classification of drowsiness. Each rhythm image was independently used 
for deep feature extraction and for LSTM-based classification. The 
concatenation of the ResNet18, ResNet50, and ResNet101 models was 
used, and the calculated accuracy scores are as presented in Table 4. 

From Table 4, it can be seen that a highest accuracy score of 91.35% 
was obtained for the Theta rhythm, whilst the second best accuracy 
score of 88.58% was produced by the Delta rhythm. The Beta and 
Gamma rhythms produced accuracy scores of 87.20% and 87.89%, 
respectively, with the lowest accuracy score produced by the Alpha 
rhythm at 85.47%. 

A further comparison of the proposed method was conducted against 
some of the other methods published in the literature, the results of 
which are shown in Table 5. 

As can be seen in Table 5, prior to the current study, the highest 
accuracy score achieved was 94.31%, produced by the method proposed 
by Budak et al. [1]. Taran et al. [7] also presented a notable accuracy 
score achievement for drowsiness detection, with an accuracy score of 
92.28%, whilst Boonnak et al. [8] published an accuracy score of 

90.27% for their proposed method. The other compared results were 
generally lower than the 90% accuracy score mark, with 87.20% pre
sented by Anita et al. [11], and Correa et al.’s [2,3] two published 
methods achieving accuracy scores on drowsiness detection of 85.66% 
and 84.10%, respectively. Similarly, Tripathy et al. [16] and Belakhdar 
et al. [4] presented accuracy scores in their studies of 85.51% and 
84.75%, respectively. 

4. Conclusions 

In this paper, a new approach was proposed for the detection of 
driver drowsiness. The proposed method was based on EEG recordings, 
with rhythms of the EEG recordings investigated in the detection of 
drowsiness. The most efficient ResNet models were used in deep rhythm- 
based feature extraction, and the following conclusions are drawn from 
these experimental works:  

1) Without rhythm division, the combination of deep features and SVM 
classifier did not produce any notable accuracy results.  

2) The deep rhythm-based features and LSTM layer method achieved 
impressive results on drowsiness detection, and especially with the 
concatenation of three ResNet models producing the highest accu
racy score.  

3) Investigations of each rhythm revealed that the Theta rhythm 
(4–8 Hz) produced the best accuracy score of the all rhythms.  

4) Comparison with the state-of-the-art methods in the literature 
demonstrated that the proposed model produced a 3.61% accuracy 
score improvement over the best existing methods.  

5) In future works, we plan to extract deeper features from the some of 
the convolutional layers of the ResNet models. In addition, feature 
selection mechanism will be investigated in order to obtain the most 
efficient of the deep features. 
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